[ad_1]

  • Arber, D. A. et al. The 2016 revision to the World Health Organization classification of myeloid neoplasms and acute leukemia. Blood 127(20), 2391–2405 (2016).

    Article 
    CAS 

    Google Scholar
     

  • Bain, B. J. Diagnosis from the blood smear. N. Engl. J. Med. 353(5), 498–507 (2005).

    Article 
    CAS 

    Google Scholar
     

  • Narayanan, S. & Shami, P. J. Treatment of acute lymphoblastic leukemia in adults. N. Engl. J. Med. 81(1), 94–102 (2012).


    Google Scholar
     

  • Roboz, G. J. Novel approaches to the treatment of acute myeloid leukemia. Hematol. Am. Soc. Hematol. Educ. Program 2011, 43–50 (2011).

    Article 

    Google Scholar
     

  • Tallman, M. S. & Altman, J. K. How I treat acute promyelocytic leukemia. Blood 114(25), 5126–5135 (2009).

    Article 
    CAS 

    Google Scholar
     

  • Nanaa, A., Akkus, Z., Lee, W. Y., Pantanowitz, L. & Salama, M. E. Machine learning and augmented human intelligence use in histomorphology for haematolymphoid disorders. Pathology 53(3), 400–407 (2021).

    Article 

    Google Scholar
     

  • Matek, C., Schwarz, S., Spiekermann, K. & Marr, C. Human-level recognition of blast cells in acute myeloid leukaemia with convolutional neural networks. Nat. Mach. Intell. 1(11), 538–544 (2019).

    Article 

    Google Scholar
     

  • Doan, M. et al. Label-free leukemia monitoring by computer vision. Cytom. Part A 97(4), 407–414 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Chandradevan, R. et al. Machine-based detection and classification for bone marrow aspirate differential counts: initial development focusing on nonneoplastic cells. Lab. Investig. 100(1), 98–109 (2020).

    Article 

    Google Scholar
     

  • Choi, J. W. et al. White blood cell differential count of maturation stages in bone marrow smear using dual-stage convolutional neural networks. PLoS ONE 12(12), 1–15 (2019).

    CAS 

    Google Scholar
     

  • Mori, J. et al. Assessment of dysplasia in bone marrow smear with convolutional neural network. Sci. Rep. 10(1), 1–8 (2020).

    Article 

    Google Scholar
     

  • Boldú, L. et al. Automatic recognition of different types of acute leukaemia in peripheral blood by image analysis. J. Clin. Pathol. 72(11), 755–761 (2019).

    Article 

    Google Scholar
     

  • Eckardt, J. N. et al. Deep learning detects acute myeloid leukemia and predicts NPM1 mutation status from bone marrow smears. Leukemia 36(1), 111–118 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Acevedo, A., Alférez, S., Merino, A., Puigví, L. & Rodellar, J. Recognition of peripheral blood cell images using convolutional neural networks. Comput. Methods Programs Biomed. 180, 105020 (2019).

    Article 

    Google Scholar
     

  • Bewersdorf, J. P. et al. Practice patterns and real-life outcomes for patients with acute promyelocytic leukemia. Blood 136(Supplement 1), 21–22 (2020).

    Article 

    Google Scholar
     

  • Sidhom, J. W. et al. Deep learning for diagnosis of acute promyelocytic leukemia via recognition of genomically imprinted morphologic features. NPJ Precis. Oncol. 5(1), 38 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Eckardt, J. N. et al. Deep learning identifies Acute Promyelocytic Leukemia in bone marrow smears. BMC Cancer 22(1), 1–11 (2022).

    Article 

    Google Scholar
     

  • Matek, C., Krappe, S., Münzenmayer, C., Haferlach, T. & Marr, C. Highly accurate differentiation of bone marrow cell morphologies using deep neural networks on a large image data set. Blood 138(20), 1917–1927 (2021).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Maron, O. & Lozano-Perez, T. A framework for multiple-instance learning. Adv. Neural Inf. Process. Syst. 10, 570–576 (1998).


    Google Scholar
     

  • Wu J, Yu Y, Huang C, Yu K. Deep multiple instance learning for image classification and auto-annotation. Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. 2015;07-12-June:460–469.

  • Kraus, O. Z., Ba, J. L. & Frey, B. J. Classifying and segmenting microscopy images with deep multiple instance learning. Bioinformatics 32(12), i52–i59 (2016).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Sadafi, A. et al. Attention based multiple instance learning for classification of blood cell disorders. MICCAI 1, 246–256 (2020).


    Google Scholar
     

  • Jia, Z., Huang, X., Chang, E. I. C. & Xu, Y. Constrained deep weak supervision for histopathology image segmentation. IEEE Trans. Med. Imaging 36(11), 2376–2388 (2017).

    Article 

    Google Scholar
     

  • Courtiol, P. et al. Deep learning-based classification of mesothelioma improves prediction of patient outcome. Nat. Med. 25(10), 1519–1525 (2019).

    Article 
    CAS 

    Google Scholar
     

  • Campanella, G. et al. Clinical-grade computational pathology using weakly supervised deep learning on whole slide images. Nat. Med. 25(8), 1301–1309 (2019).

    Article 
    CAS 
    PubMed Central 

    Google Scholar
     

  • Lu, M. Y. et al. Data efficient and weakly supervised computational pathology on whole slide images. Nat. Biomed. Eng. 5(6), 555–570 (2021).

    Article 
    PubMed Central 

    Google Scholar
     

  • Manescu, P., Bendkowski, C., Claveau, R. et al. A weakly supervised deep learning approach for detecting malaria and sickle cells in blood films. MICCAI., vol. 12265, 226–235 (LNCS, 2020).

  • Quiñones, V. V., Macawile, M. J., Ballado, A., Cruz, J. D. & Caya, M. V. Leukocyte segmentation and counting based on microscopic blood images using HSV saturation component with blob analysis. 2018 3rd Int. Conf. Control Robot. Eng. ICCRE 2018, 254–258 (2018).

  • Simonyan, K. & Zisserman, A. Very deep convolutional networks for large-scale image recognition. 3rd Int. Conf. Learn. Represent. ICLR 2015 – Conf. Track Proc., 1–14 (2015).

  • Deng, J., Dong, W., Socher, R. et al. ImageNet: A large-scale hierarchical image database. 2009 IEEE Conf. Comput. Vis. Pattern Recognit., 248–255 (2010).

  • Labati, R. D., Piuri, V., Scotti, F.. ALL-IDB: The acute lymphoblastic leukemia image database for image processing. IEEE Int. Conf. Image Process. 2089–2092 (2011).

  • Reinhard, E., Ashikhmin, M., Gooch, B. & Shirley, P. Color transfer between images. IEEE Comput. Graph. Appl. 21(5), 34–41 (2001).

    Article 

    Google Scholar
     

  • Acevedo, A. et al. A dataset of microscopic peripheral blood cell images for development of automatic recognition systems. Data Br. 30, 105474 (2020).

    Article 
    CAS 

    Google Scholar
     

  • Lehmann, S. et al. Early death rates remain high in high-risk APL: Update from the Swedish Acute Leukemia Registry 1997–2013. Leukemia 31(6), 1457–1459 (2017).

    Article 
    CAS 

    Google Scholar
     

  • Chen, C. et al. Early mortality in acute promyelocytic leukemia: Potential predictors (review). Oncol. Lett. 15(4), 4061–4069 (2018).

    PubMed Central 

    Google Scholar
     

  • Jamy, O. H., Dhir, A., Costa, L. J. & Xavier, A. C. Impact of sociodemographic factors on early mortality in acute promyelocytic leukemia in the United States: A time-trend analysis. Cancer 0, 2021 (2021).

  • Schuh, A. C. Timely diagnosis and treatment of acute promyelocytic leukemia should be available to all. Haematologica 107(3), 570–571 (2022).

    Article 

    Google Scholar
     

  • [ad_2]

    Source link

    Leave a Reply

    Your email address will not be published. Required fields are marked *